A novel immunoglobulin G monolayer silver bio-nanocomposite
نویسندگان
چکیده
BACKGROUND Nanoparticles have a large number of surface atoms, which translates into a significant increase in the surface energy. Once introduced in a biological environment they tend to interact with proteins and form a protein corona shell. The aim of this study was to develop a novel, silver based, bio-nanocomposite for biological applications. Immunoglobulin G (IgG) molecule was chosen for the passivation of the silver nanoparticles (AgNPs) in order to avoid macrophage recognition of the synthesized structures. RESULTS Monodisperse IgG-folinate functionalized silver nanoparticles were obtained, with sizes around 39 nm. UV-Vis and UATR-FT-IR spectroscopies were employed to confirm the successful functionalization of the silver nanoparticles. Atomic force microscopy and dynamic light scattering measurements gave information about the size and shape of the nanoparticles prior and after the passivation with IgG. CONCLUSIONS Immunoglobulin G formed a monolayer around the nanoparticles with the binding site seemingly in the Fc domain, leaving the two Fab regions available for antigen binding. To our knowledge, this is the first report of an IgG-folinate functionalized AgNP bionanostructure developed for biological applications. Graphical abstract:Graphical illustration for IgG-folinate silver nanoparticles functionalization steps.
منابع مشابه
Synthesis and Characterization of γ-MnO2-AgA Zeolite Nanocomposite and its Application for the Removal of Radioactive Strontium-90 (90Sr)
In this scientific research, for the first time, the removal of radioactive strontium-90 (90Sr) by γ-MnO2-AgA zeolite as a novel nanocomposite adsorbent was accomplished under different conditions such as pH, temperature, adsorbent amount and the contact time that are examined from drinking water of Ramsar city and monitored via Ultra Low-Level Liquid Scintillation Counting (LSC) technique. Pri...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملNH3 sensors based on novel TiO2/MoS2 nanocomposites: Insights from density functional theory calculations
Density functional theory calculations were performed to investigate the interactions of NH3 molecules with TiO2/MoS2 nanocomposites in order to completely exploit the adsorption properties of these nanocomposites. Given the need to further comprehend the behavior of the NH3 molecules oriented between the TiO2 nanoparticle and MoS2 monolayer, we have geometrically optimized the complex systems ...
متن کاملMonolayer protection for eletrochemical migration control in silver nanocomposite
The authors introduced an effective approach of using monolayer-protected silver nanoparticles to reduce silver migration for electronic device interconnect applications. Formation of surface complex between the carboxylate anion and surface silver ion reduces the solubility and diffusivity significantly of migration components and therefore contributes to effective migration control. A fundame...
متن کاملSynthesis and Characterization of γ-MnO2-AgA Zeolite Nanocomposite and its Application for the Removal of Radioactive Strontium-90 (90Sr)
In this scientific research, for the first time, the removal of radioactive strontium-90 (90Sr) by γ-MnO2-AgA zeolite as a novel nanocomposite adsorbent was accomplished under different conditions such as pH, temperature, adsorbent amount and the contact time that are examined from drinking water of Ramsar city and monitored via Ultra Low-Level Liquid Scintillation Counting (LSC) technique. Pri...
متن کامل